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Abstract—Feedback control is widely applied to the cam-
paign management in online advertising. Learning the pattern
of user traffic on Internet plays an important role in solving
the control problem. In this paper, we focus on characterizing
the seasonality, e.g., time of day (TOD) pattern of Internet user
traffic for individual ad campaign. We model the seasonality
using a truncated Fourier series with a set of amplitude and
phase parameters. These seasonality parameters are estimated
in a Bayesian framework using a minimum mean square error
(MMSE) estimator, with their prior distribution learnt from
historical data of a large number of campaigns. The proposed
Bayesian method is shown to be robust and renders sensible
seasonality for campaigns of disparate noise levels.

I. INTRODUCTION

Online advertising is a fast growing industry and in order
to deliver the campaign budget smoothly over time, as
desired by the advertiser, it is critical to implement feedback
control in the campaign management system. An early paper
on feedback control applied to online advertising is available
in [1], wherein several important challenges are outlined
but detailed solutions are omitted. A more comprehensive
and up-to-date overview of the control problem is available
in [2]. The fact that the plant is unknown, dynamic, periodic,
nonlinear, and in general discontinuous is a characteristic
property of online advertising processes and is a fundamental
challenge in the development of feedback control solutions.
One of the main issues is that the user traffic to different
web sites is volatile with stochastic effects as well as with
trends and seasonality. In this paper, the Internet user traffic
is represented by the number of impressions available during
a fixed period of time, where an impression is one view of
an ad. The seasonality, in particular, is dramatic and unless
it is carefully accounted for during the feedback control,
the advertiser may end up paying an unnecessary high price
for impressions during hours of the day when the available
number of impressions is low.

The idea of shaping the reference signal for ad campaign
control is documented in [3]. In [4], the author proposed
a control system to regulate a periodic plant subject to
significant load disturbances and measurement noise, but
with negligible dynamics between control input and output.
The idea was further explored and the work was continued
in [5]. However, there is no robust method proposed in all
work on how to identify the seasonality of the plant for the
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reference signal. In this paper, we focus on developing an
algorithm for seasonality identification of the periodic plant
described in Section II. The more accurate the seasonality
model is, the better a control system can be applied to the
ad campaign.

In Verizon Media Demand Side Platform (DSP), feedback
control is implemented on a campaign level. Thus, seasonal-
ity of the plant needs to be estimated for each ad campaign.
In the meanwhile, campaigns in the same network (a group
of timezones) exhibit strong similarity, due to the fact that
the Internet traffic pattern, driven by human activity routine,
is closely associated with the time zone. A good seasonality
identification algorithm needs to be able to generate sensible
model for each individual campaign based on its historical
data and the network prior. The historical impression data
can be of remarkably different noise level across campaigns,
adding to the challenge of inference task.

There is a large literature on identifying patterns in time
series data with seasonal component [6]. Traditionally, the
autoregressive integrated moving average (ARIMA) model
has been one of the most widely used linear models in
time series forecasting [7]. Different variations of ARIMA
combined with neural network have been proposed lately
in [8], [9]. Fourier transformation is also widely utilized
for extracting seasonal component of the time series [10].
However, in all previous work, seasonality parameters were
estimated solely based on the historical data and can be
highly unreliable when the data is extremely noisy, which is a
common issue for small size campaigns in online advertising.

To have a more reliable algorithm to identify seasonality
on campaign level, we propose a model in which robustness
is introduced in two levels. A robust linear regression method
is used to handle outliers in the impression data for initial
assessment of seasonality parameters. Further, on a higher
level we bring in an extra source of information into consid-
eration, which is the network prior. Such Bayesian strategy
benefits all campaigns in general, especially for campaigns
with highly noisy data.

II. BACKGROUND

In [5], the ad optimization problem is turned into a control
problem and solved using a periodic control system, where
the periodicity of the plant is assumed to be a priori known.

Consider a plant which locally around the operating point
can be described by a linear time-periodic model having
insignificant dynamics but dramatic seasonality. The season-
ality is in form of the T-periodic plant gain K, (1+h(t)) > 0,
where K, is the constant component of the plant gain, and



h(t) is the seasonal component, h(t) € C, h(t) > —1, and
J. tt+T h(r)dr = 0. The plant maps a bid adjustment control
signal u to an ad spend rate y. Assume the system is subject
to a load disturbance vy(t) and measurement noise vy, (%)

entering the plant as indicated in Fig. 1. Measurement noise
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Fig. 1. Block diagram of the plant model.

is here interpreted as the random deviation of the spend rate
away from its expected value and is caused by the stochastic
behavior of Internet traffic. Note, by definition Ev,, = 0.
Load disturbance is the reflection of a dynamic competitive
landscape among advertisers, meaning that competing adver-
tisers adjust their bids up and down over time.

The input-output relationships of the plant are mathemat-
ically described by

(1+h®) (Kp(ut o) +vm), (O

We may model the v — y relationship as non-dynamic by
ensuring the dynamics of the control system is dominant.
Plant gain K,, may evolve dynamically, but this dynamic is
in general slow and is disregarded in this paper. In [4], the
authors proposed a periodic controller for the plan describe
above. The closed-loop system is proven to be globally
asymptotically stable, and the closed form solution of the
state (and other signals) is derived. It is shown in simulations
how the proposed controller outperforms a corresponding
standard non-periodic feedback controller. The paper is based
on the strong assumption that the controller has a perfect
knowledge of the plant seasonality h(t). The identification
of the plant seasonality is a challenging task, as described in
Section I and is the goal of this paper. In the following sec-
tion, we formulate the problem mathematically and introduce
the training data set.

y =

III. PROBLEM FORMULATION

The available impression data from Verizon Media fore-
casting system, shown in Fig. 2, demonstrates significant
TOD pattern, meaning that a similar sine-shaped pattern
repeat itself every 24 hours on top of a slowly varying
trend component. The seasonality of plant is due to such
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Fig. 2. Impression rate data sampled at every 0.25 hours.

seasonality of the available impression, and thus in this work,
we estimate h(t) based on the impression data. We use
f(t) to represent the impression volume per unit time (or
impression rate) at time instant ¢ and we model the time
series in a linear form as follows

f(t) = ftTend(t) (1 + h’(t)) ) 2

where the trend component f;.q(t) is constant or at most
slowly varying. And the seasonality component h(t) repre-
sents a periodic function. The periodic function h(t) is not
limited to the TOD pattern, it can also include any periodic
terms, such as time of week (TOW) pattern, which may not
be as significant. We model the seasonality component A (t)
using a truncated Fourier series as follows
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where Iy € N and I, € N represent the numbers of terms
corresponding to the period of a day, ie., Ty = 24 (in
hours), and the period of a week, i.e., T, = 168 (in hours),
respectively. In the rest of this paper, time unit is always
in hours, unless otherwise stated. The index i, represents
the 24-th component of day period term with an amplitude
parameter [3;, and a phase parameter ¢;,. The index i,
represents the 7,,-th component of week period term with
an amplitude parameter 3;  and a phase parameter ¢; . The
term ¢(t) represents a noise component, which is usually
modeled as a Gaussian distributed random variable. The total
number of sinusoidal terms in Eq (3) is I = I + I,,. We
define two vector parameters B := [f1,...,081,,-..,01]T
and ¢ := [¢1,...,¢1,,...,¢1]T to represent all unknown
seasonality parameters.

This paper focuses on estimating the seasonality parame-
ters 3, ¢ based on impression rate sampled according to a
time vector t := [t1,...,ty]T € RM*1 where M € N rep-
resents the total number of samples. We assume that the time
vector is evenly spaced with sampling interval A € (0, 24),
ie, tym —tm_1 = A, for m = 2,...,M. The observed
impression rate data, or impression data for short, can be

represented by a vector ny = [nz(t1),...,n(tm)]7 €
NMXl.

IV. METHODOLOGY

The proposed algorithm has three steps. The first step,
in IV-A, is to estimate and remove the trend component
from impression data. The second step, in IV-B, is to have
an initial estimate of the seasonality parameters and the
campaign noise level. The last step, in IV-C, is to estimate
seasonality parameters in a Bayesian framework where the
network prior is taken into account.



A. Trend estimation

Impression data ny, according to the model in Eq (2),
contains both trend component and seasonal component. In
order to model the seasonal component, we need to first
estimate and remove the trend component from the raw
impression data mn;. Trend component is estimated using
smoothing spline [11], [12], [13], [14], due to its flexibility in
adjusting the smoothness of the resulting curve. Using cubic
B-spline, firena(t) can be written as

n+4

frrena(t) =Y 02,:Bia(t), 4)
i=1

where B; 4(t) is cubic B-spline basis function. In our case,
we choose every training data points as a knot, i.e., n = M.
The trend parameters Oy = [021,022,...,02 p44]T €
RM+4)x1 are estimated by minimizing the following pe-
nalized residual sum of squares

M
J(ftrend) Z (nl (tm) - ftrend(tm))2
m=1 . ) ,
e [ () 5

where A¢reng > 0 is a tuning parameter, often called
the smoothing parameter, the higher the value Aj.cpq4, the
smoother the resulting fit. To solve the above minimiza-
tion problem, we first rewrite the equations in a linear
form. [ft’rend(tl)a .. -aftrend(tJ\I)]T = N385, where Ny €
RM>(M+4) ig the coefficient matrix that can be obtained
based on the property of B-Spline and the uniform knot
sequence. The second term in Eq. (5) can be rewritten as
follows,

thigh . 2
/ (ftrend(t)> dt = 95929% (6)
tiow

where the coefficient matrix Qo € RM+TO)x(M+4) ¢ oh-
tained by taking the second derivative of IN>. By minimizing
the objective function in Eq (5), the parameters of trend
component can be derived as follows

92 = (N21-N2+)‘trend92)_1 NQTTL] (7)

The estimated trend component are thus obtained as
[ftrend(t1)7 ey ftrend(tM)]T - N202-

According to Eq (2), knowing the estimated trend, the
measured seasonality at time ¢, denoted by y(t), can be
written as

y(t) = ﬂ

f t'rend(t)
We further define a vector of measured seasonality y =
[y(t1),...,y(tam)]T € RM*L The detailed description of
trend estimation and removal is provided in Algorithm 1. It
has to be noted that since impression volume can not be
negative, a constrained optimization problem is solved to
obtain trend parameters, if the solution in Eq (7) generates
negative trend component.

—1,vtet. (8)

Algorithm 1 Trend Estimation and Removal

1: Parameters: A\, a, K

2: Input signals: t,nn;

3: Output signals: y

4: Calculate N2, Q2 to transform (5) to the following: J(62) =

(n; — N202)T (n; — N262) + Arend03 2262

0‘:2 = (NQTNQ:F )\trendQQ) -t N;nl

ft'rgnd = N26;

if firenq has negative values then > If minimum of all elements in

estimated trend vector is negative

8: Solve the following constrained optimization problem

9: 0> = arg 9rl’11>r6 (’n] - N292)T (n[ - N202) -+ )\trendegﬂzez
22

AN

10 y= 21— —1
Ftrend
11: return y

B. Seasonality estimation in a non-Bayesian framework

In this subsection, we focus on obtaining an initial estimate
of seasonality parameters in a non-Bayesian framework
based on the measured seasonality y computed in the previ-
ous subsection. According to Eq (3), by writing things in a
linear form and stacking all M equations together, we have
the following

y=N0O+e¢e, 9

where N € RM*2! ig the coefficient matrix and 6 :=
01,09, ...,007]T € R2X1 is the intermediate seasonality
parameter which has a one to one relationship with the
original seasonality parameters 3, ¢, as follows

_J Bit1)/2c08 912 if i is odd
0; = ) o (10)
Bis2 sin ¢ /o if 7 is even.
And the coefficient matrix IV is given as the following
N (t1)
N = ) € RM>2!

where N (t,,) = [Ni(tm),..., Nor(tm)] € RM*1 and
each element N;(t,,),¢ € {1,2,...,2I} in N (t,,) can be
expressed as follows

For i € {1,2,...,2I4},

] Tr(i+1)/tm 3 ;s
sin(——=~—"=) if ¢ is odd
Ni(tm) = (m/tﬁi ) e 1D
cos(—4"), if ¢ is even.
Fori € {214+ 1,21, +2,...,2I},
Nift,,) = sin(TU=2Lat/tmy - if G is odd 12
e cos(ﬂ(i%[ﬁ/t"‘) if 7 is even.

In this subsection we assume that @ is deterministic but
unknown. Regular least squares estimator [15] may have poor
performance in presence of outliers. Thus, we use a robust
linear regression method, which uses iteratively reweighted
least squares with a specific weighting function (bisquare)
[16]. Within each iteration, a new weighted least square (with
the weights from previous iteration) is formed and solved.
And a new weight is calculated for each data point based on
its corresponding residual in the current iteration.



At step k, the estimate 6*) is obtained by :
M
(k) — mi (k=1) - N 2 1
0 melnmz;lw (trm ) (y(tm) (tm)0)°, (13)

where w(*~1(t,,) is the weight calculated at step k — 1
for the data point sampled at time ¢,,. And the new weight
w("')(tm) is based on the corresponding residuals from step
k.Form=1,... M

w(k)(tm) =f (y(tm,) - N(tM)O(k)) )

where f(-) represents a specific weighting function which
assigns higher weights for data points with larger residuals
and lower weights for those with smaller residuals.

The algorithm terminates when the stopping criteria is
satisfied (for example, when the difference between estimates
of two consecutive iterations is small enough). This approach
is robust to the outliers by iteratively assigning incrementally
lower weights to those outliers.

The pseudo code of the above estimator is given in
Algorithm 2. It may happen that the estimated seasonality
6 results in negative impression volume at some t which
is not physically acceptable. To guarantee that the estimator
generates an acceptable seasonality model, the constraint in
line 12 of Algorithm 2 is added to the optimization problem.

(14)

M
Hleinmz::l w(tm) (Y(tm) — N(tm)e)Q (15)

st. N(tn)0+1>0, Ymel,...,M.

The constrained minimization problem can be solved by
sequential least square programing.

After we obtain an initial estimate of é, we are able to
calculate the estimated residual vector as € = y— N 6. Then
the estimated variance 62 is obtained from € as follows

M M w6 — )2

~92 ~
6 = var(é, w) = ,  (16)
(M -1) Z%:l Wm
M e .
where € = w represents the weighted mean of

all residuals terms. In practice, in dealing with extremely
noisy data which may even contain faulty data points, weight
adjustment is needed before we can have a good estimate of
o?. An adjustment factor w,g; € [0,1] is used to assign
a lower weight to data points that are likely to be faulty.
The estimated noise variance, 62, implies the noise level of
campaign. The smaller the &2, the cleaner the impression
data.

C. Bayesian framework

Knowing the prior distribution of 8, we can formulate the
estimation problem of seasonality parameters in a Bayesian
framework [15], [17]. Unlike the previous subsection where
we take 0 as deterministic, now we model 8 as random with
certain prior distribution.

We solve the Bayesian estimation problem by minimizing
the Mean Square Error (MSE)

MSE=E [(65(y) - 0) (sw)—6)|, (7

Algorithm 2 Initial Seasonality Estimation

1: Parameters: wqq;,a, K, ar, Ky

2: Input signals: y

3: Output signals: 62

4: Calculate matrix IN to transform the problem to the following: y =

N6

5: R = robustfit(y, IN) > Solve y = IN@ using robust regression
6: @ = R.parameters

7: w = R.weights

8: Assign lower weights to zero volume data using adjust factor wgg;
9: if 6 is physically not acceptable then

10: Solve the following constrained optimization problem

11: 6:argmeinH\/W'y—\/WNGH2
12: st. N@+1>0

13: é=y— N6

14: 62 = var(é, w) > Calculate the weighted variance of all elements in

the vector
15: Return 62

> W = diag(w)

where the expectation is taken with respect to the prior
distribution of @ and the subscript B in 6 is to indicate that
the estimate is obtained in Bayesian framework. Using the
MSE as risk function, the Bayesian estimate of the unknown
parameter is the mean of the posterior distribution.
65 =E[0ly] = /0p(0\y)d0~ (18)
We assume that the residual € := [eq,...,ep]T € RMX!
in the seasonality model in Eq (9) is i.i.d and Gaussian
distributed, i.e., €,, ~ N'(0,0%),¥m = 1,..., M. The noise
variance, o2, is unknown but we have an estimate of it, 52,
from the previous subsection.
We model the prior distribution of 6 as multivariate
Gaussian with mean pg and covariance matrix g, Eq (18)
can be further derived as [15]

YoNT

0 __(y—N
NEeNT 1571 Y~ Vo).

Op = po + 19)
where I is a M x M identity matrix. Once ] B is obtained, we
can transform it back to B 5 and (ﬁ p according to their one-
to-one mapping relationship. The detailed implementation of
the Bayesian estimator is in Algorithm 3. It can be seen
from Eq. (19) that as 62 increases, the prior information
has higher weight while the measurements y becomes less
valuable in the final evaluation of @ p. Intuitively, when the
impression data is more noisy, the final estimate relies more
on prior information. On the contrary, if the impression data
is well behaved, prior information plays a smaller role. The
advantage of having such a Bayesian framework is to fully
utilize the prior information, especially when the other source
of information, i.e., the impression data, is noisy and thus
not informative about the seasonality model. The proposed
algorithm generates a reasonable seasonality model while
acknowledging the difference among campaigns, as will be
shown in the following section.

V. EXPERIMENTAL RESULTS

The TOD pattern, among all seasonal components, includ-
ing day of week, are of particular interest, since the reference
signal is pre-set according to the daily budget. Thus, in the



Algorithm 3 Bayesian Estimation of Seasonality

Parameters: pjs, XU, pure, meure 9P 339P
Input signals: y,5<, NV
Output signals: B35, ¢p
Choose prior distribution (fg, 3g) according to ad service ID
if No enough data points for estimation then
Op = g > Use network prior mean
else

A e

SyNT

Y (y— N
(NNt 1 o7y Y T VE)

05 = po +
9: if 6 B is physically not acceptable then
10: Op = py > Use network prior mean
11: Transform éB to Bg, b5 > (LE}B,qZ)B):gfl(BAB)
12: return Bp, ¢p

experiment, we set the number of terms corresponding to
the period of a week in Eq. (3) be O, ie., I, = 0. We
choose I; = 2 based on the observation that most TOD
patterns exhibit at most 2 peaks. The selection of the hyper
parameters may influence the performance of our model, but
is beyond the scope of this paper.

In Verizon Media forecasting system, the raw impression
data is provided with sampling interval A = 0.25 hours.
According to Nyquist-Shannon sampling theorem [18], if a
function z(t) contains no frequencies higher than B hertz, it
is completely determined by giving its ordinates at a series of
points spaced 1/(2B) seconds apart. The highest frequency
of the continuous time series model for seasonality in Eq
(3)is B = %, and thus, the condition A < QTT‘; = 6 hours
allows all seasonality information to be preserved in discrete
impression data n;. We choose a feasible A = 4 so that
equal number of data points are sampled for each day. An
example of the resulting 4-hour impression data is plotted
using crosshair symbol in the first subplot of Fig. 4.

The estimated trend component shown by the green curve
in the first subplot of Fig. 4. Once the trend component
from impression data m; is removed according to Eq (8),
the measured seasonality y can be obtained, as shown by
the dots in the second subplot of Fig. 4. A non-Bayesian or
initial estimate of seasonality is shown by the blue curve in
the second and third subplots of Fig. 4.

Before estimating the seasonality parameters 6 in a
Bayesian framework, we infer its prior distribution using
historical data of all campaigns. We learn a specific prior
distributions of @ for each network, such as U.S., Japan
and Europe. Taking U.S. as an example, we first select K
well behaved campaigns, K = 1117 in our case. Then, for
each campaign an estimate of the seasonality parameter 6
is generated using the non-Bayesian method discussed in
Subsection IV-B. At last, a multivariate normal distribution is
fitted to training data (él, 92, . ,éK), as plotted in Fig. 3,
and the parameters, mean pg® and covariance matrix 3g° are
obtained using maximum likelihood estimation (MLE), where
the superscript represents a network information encoded in
an ad service ID. The distribution N (py®, 34*) will be used
as the prior of 8 for campaigns with ad service ID being U.S.
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Fig. 3. Scatter plots and histograms of seasonality parameters 6 in U.S.
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Fig. 4. Case one: well behaved campaign.

In the first case, Fig. 4, the data is well behaved, as can be
seen from the raw impression data in the first subplot, and
the TOD pattern is strong and easily recognizable. Thus,
as shown in the second and third subplots, the Bayesian
estimated TOD pattern (red line) is close to initial (non-
Bayesian) estimates (blue line), though deviates from the
network prior (dotted black line in the third subplot). In
conclusion, when the impression data of the campaign is of
low noise level, the Bayesian estimation algorithm assigns
high weight or credibility to the impression data and low
weight or credibility to network prior. Thus, the eventual
estimated seasonality follows the impression data.

In the second case, Fig. 5, the noise level of the campaign
are higher compared to the first case, as can be seen from
both the raw impression data in the first subplot and the
estimated noise variance V62 = 0.431. The measured
seasonality in the second subplot are not of clear pattern.
The Bayesian estimated seasonality in the third subplot is
different from the initial (non-Bayesian) estimated seasonal-
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Fig. 5. Case two: slightly noisy campaign.

ity and is pulled towards the network prior. So, the algorithm
assigns a slightly higher weight to the prior distribution
when the noise level is higher. It strikes a balance between
network prior and impression data when the impression data
is moderately credible.

In the last case, Fig. 6, the campaign is extremely noisy.
No pattern can be seen from the raw impression data in
the first subplot, and the estimated noise variance is high.
The initial (non-Bayesian) estimated seasonality is almost
flat, as can be seen from the third subplot. But the Bayesian
estimate majorly follows the prior information instead. So,
when impression data is not informative at all, our proposed
algorithm heavily relies on network prior and still renders a
physically sensible TOD pattern. We applied our approach
to more than 1000 campaigns across different networks. The
above three examples cover all cases we met, in every one of
which a reasonable TOD pattern is generated, demonstrating
the flexibility and robustness of our proposed Bayesian esti-
mation method. Such robustness is crucial in an automated
campaign management system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of seasonality identification
in feedback control system for campaign management was
formulated as a Bayesian estimation problem. A solution
composed of three main algorithms was proposed using
the network prior distributions learnt from a large number
of campaigns. The proposed Bayesian estimation method
performed well in estimating TOD pattern of individual
campaigns. It was robust and works for campaign with
any noise level by adaptively assigning credibility to the
prior distribution and the impression data. In the future, we
will investigate the impact of some hyper parameters, such
as sampling interval (A), number of day and week terms
(14, ), on the overall system performance. We also plan
to further investigate and analyze the confidence interval for
estimated TOD pattern to facilitate the consumption of the
model based its confidence level.
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Fig. 6. Case three: extremely noisy campaign.
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